Data-Intensive Computing for Text Analysis
CS395T / INF385T / LIN386M '

University of Texas at Austin, Fall 2011

Lecture 5
September 22, 2011

Jason Baldridge Matt Lease
Department of Linguistics School of Information
University of Texas at Austin University of Texas at Austin
Jasonbaldridge at gmail dot com ml at ischool dot utexas dot edu

Cloud’
A MapReduce Library for Hadoop

https://sites.google.com/a/utcompling.com/dicta-f11/
https://sites.google.com/a/utcompling.com/dicta-f11/
https://sites.google.com/a/utcompling.com/dicta-f11/
http://www.utexas.edu/
http://hadoop.apache.org/
http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/

Acknowledgments

Course design and slides based on
Jimmy Lin’s cloud computing courses at
the University of Maryland, College Park

Some figures courtesy of the following
excellent Hadoop books (order yours today!)

* Chuck Lam’s Hadoop In Action (2010)

e Tom White’s Hadoop: The Definitive Guide,
2nd Edition (2010)

http://www.umiacs.umd.edu/~jimmylin
http://www.umiacs.umd.edu/~jimmylin/teaching.html
http://www.manning.com/lam/
http://www.manning.com/lam/
http://www.manning.com/lam/
http://www.hadoopbook.com/
http://www.hadoopbook.com/

Today’s Agenda

* IR and MapReduce
— Boolean Retrieval
— Ranked Retrieval

— Inverted Indexing
e Secondary-sorting: sorting postings without buffering
* Order-inversion: compressing postings without buffering

* Group Project organization

e Spelling-correction via IR methods above
— Representing words via character n-grams

IR and MapReduce

Fi1rst, nomencl atur e

o |nformation retrieval (IR)

Focus on textual information (= text/document retrieval)
Other possibilities include image, video, music, ...

o What do we search?

Generically, “collections”
Less-frequently used, “corpora”

o What do we find?

Generically, “documents”

Even though we may be referring to web pages, PDFs,
PowerPoint slides, paragraphs, etc.

Abstract IR Architecture

uer .
Query Documents quisition

aC
qocument awling)

Gigﬁ*mﬂzc

Representation
Function

!

Document Representation

|

| online ! offline

\ 4

Representation
Function

1

Query Representation

Comparison
Function

|
1

Hits

A

Index

How do we represent text?

o Remember: computers don't “understand” anything!

o “Bag of words”

Treat all the words in a document as index terms

Assign a “weight” to each term based on “importance”
(or, in simplest case, presence/absence of word)

Disregard order, structure, meaning, etc. of the words
Simple, yet effective!

o Assumptions

Term occurrence is independent
“Words” are well-defined

Sample Document

McDonald's slims down spuds

Fast-food chain to reduce certain types of
fat in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as
it moves to make all its fried menu items
healthier.

But does that mean the popular shoestring fries
won't taste the same? The company says no. "It's
a win-win for our customers because they are
getting the same great french-fry taste along with
an even healthier nutrition profile," said Mike
Roberts, president of McDonald's USA.

But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use,
but at least one nutrition expert says playing with
the formula could mean a different taste.

Shares of Oak Brook, lll.-based McDonald's
(MCD: down $0.54 to $23.22, Research,
Estimates) were lower Tuesday afternoon. It was
unclear Tuesday whether competitors Burger
King and Wendy's International (WEN: down
$0.80 to $34.91, Research, Estimates) would
follow suit. Neither company could immediately
be reached for comment.

“Bag of Words”

14 x McDonalds

12 x fat

11 x fries

8 X new

7 % french

6 X company, said, nutrition

5 x food, oll, percent, reduce,
taste, Tuesday

What ' s a word?

9 a hr 2 - dPAFtWHRF Lp F
b2U aoM@FIATE® p Hwk
WprFTC€3 niOmuF Wp
pUBOF wdATm™mMA Wpb
1982 afr K aA4fF X3 aoB Fnantmps . pN"3

Bbictynasa B MewaHckom cyae MockBbl 3kc-rnasa FOKOCa
3asABUN He coBepLuan HUYero NPOTMBO3aKOHHOIO, B YeM
Oo6BUHSAET ero reHnpokypatypa Poccum.

O) ®IdLNPkT »¥UN &6 U I032005-060P) Fybi g
0 U%| B ¢ BORAz %U R %R1BO%UEDIZO B | @i R
- .. JDFevD>o®©

= 25

Counting Words

Documents

case folding, tokenization, stopword removal, stemming

Bag of
Words sx seMcs, worloxvledge, etc.

N
./

Inverted
Index
\/

Boolean Retrieval

o Users express gueries as a Boolean expression

AND, OR, NOT
Can be arbitrarily nested

o Retrieval iIs based on the notion of sets

Any given query divides the collection into two sets:
retrieved, not-retrieved

Pure Boolean systems do not define an ordering of the results

Inverted Index: Boolean Retrieval

Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham

1 2 3 4

blue 1 blue —» 2
cat 1 cat — 3
€gg 1 €99 — 4
fish 11 fish — 1 — 2
green 1 green —» 4
ham 1 ham — 4
hat 1 hat — 3
one 1 one — 1
red 1 red — 2
two 1 two — 1

Boolean Retrieval

° To execute a Boolean query:

Build query syntax tree

OR
(blue AND fish) OR ham ham AND
For each clause, look up postings blue fish
blue — 2
fish — 12

Traverse postings and apply Boolean operator
o Efficiency analysis

Postings traversal is linear (assuming sorted postings)
Start with shortest posting first

Strengths and Weaknesses

o Strengths

Precise, if you know the right strategies
Precise, if you have an idea of what you're looking for
Implementations are fast and efficient

o \Weaknesses

Users must learn Boolean logic

Boolean logic insufficient to capture the richness of language
No control over size of result set: either too many hits or none
When do you stop reading? All documents in the result set are
considered “equally good”

What about partial matches? Documents that “don’t quite match”
the query may be useful also

Ranked Retrieval

o QOrder documents by how likely they are to be relevant to
the information need

Estimate relevance(q, d)
Sort documents by relevance

* note independence assumption between documents wrt relevance
Display sorted results

o User model

Present results one screen at a time, best results first
At any point, users can decide to stop looking

o How do we estimate relevance?

Assume document is relevant if it has a lot of query terms
Replace relevance(q, d)) with sim(q, d)
Compute similarity of vector representations

Vector Space Model

Assumption: Documents that are “close together” in
vector space “talk about” the same things

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~ “closeness”)

Similarity Metric

o Use “angle” between the vectors:

cos() = —@é
ol
©
sim(d,,d,) = cm AW, W

ool Jalw [alw,

o Qr, more generally, iInner products (if already normalized):

\/

S"T(dj’d) a._l] |k

o Recall this is for similarity of query & document vectors

Term Weighting

o Term weights consist of two components

Local: how important is the term in this document?
Global: how important is the term in the collection?

o Here’s the intuition:

Terms that appear often in a document should get high weights
Terms that appear in many documents should get low weights

o How do we capture this mathematically?

Term frequency (local)
Inverse document frequency (global)

TF.IDF Term Weighting

W ; =tf, j(']bgﬁ
, , n

VVi j weight assigned to term i in document j

tfi J- number of occurrence of term i in document |
N number of documents in entire collection

N. number of documents with term i

Inverted Index: TF.IDF

Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham

tf
1 2 3 4 (df
blue 1 1 blue »1—+2 1
cat 1 1 cat —»1—+3 1
egg 11 egg —»1—>4 1
fish 2| 2 2 fish »>2—>1 22 2
green 11 green —» 14 1
ham 1|1 ham —»1—+4 1
hat 1 1 hat —»1—+3 1
one 1 1 one 1~ 1t
red 1 1 red ~ 12 Bt
two 1 1 two »1—>1 1

Positional Indexes

o Store term position in postings
o Supports richer queries (e.g., proximity)

o Naturally, leads to larger indexes...

Inverted Index: Positional Information

Doc 1

one fish, two fish

blue
cat
€gg
fish
green
ham
hat
one
red

two

Doc 2
red fish, blue fish

Doc 3
cat in the hat

blue
cat
€gg
fish
green
ham
hat
one

red

Doc 4

green eggs and ham

v
v
~lw

v
N
v

v
v
w | &~ s

£ 1))) O (SN (Y Y)

(3]
(1]

(2]

24— 2 | 2 [[24]

(1]

(3]

(2]

(1]

(1]

(3]

Retrieval in a Nutshell

o Look up postings lists corresponding to query terms
o Traverse postings for each query term
o Store partial query-document scores in accumulators

o Select top k results to return

Retrieval: Document -at -a-Time

o Evaluate documents one at a time (score all query terms)

blue 9 121121 |1 35 1

fish 1 2 9 1 21 3/ 34 1/ 35 2|80 3

Document score in top k?

ACCU_m_UlatorS Yes: Insert document score, extract-min if queue too large
(e.g. priority queue) No: Do nothing

o Tradeoffs

Small memory footprint (good)
Must read through all postings (bad), but skipping possible
More disk seeks (bad), but blocking possible

Retrieval: Query -At-A-Time

o Evaluate documents one guery term at a time

Usually, starting from most rare term (often with tf-sorted postings)

blue 9 12121 1, 35 1

Accumulators

Scorey-(docn) =s (e.g., hash)

fish 1 2 9 1 21 3/ 34 1/ 35 2| 80 3

o Tradeoffs

Early termination heuristics (good)
Large memory footprint (bad), but filtering heuristics possible

MapReduce it?

o The indexing problem

Scalability is critical Perfect for M3
Must be relatively fast, but need not be real time
Fundamentally a batch operation

Incremental updates may or may not be important
For the web, crawling is a challenge in itself

o The retrieval problem

Must have sub-second response time
For the web, only need relatively few results

Uh... not sO good...

Indexing: Performance Analysis

o Fundamentally, a large sorting problem

. Terms usually fit in memory
. Postings usually don't

o

How is it done on a single machine?

o

How can it be done with MapReduce?

o

First, let's characterize the problem size:

. Size of vocabulary
. Size of postings

Vocabul ary Si ze: Heaps

b M is vocabulary size
I\/I — k I T is collection size (number of documents)
k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

o Heaps’ Law: linear in log-log space

o Vocabulary size grows unbounded!

Heaps'’ Law for RCVI1

k=44
b=0.49

log10 M

- First 1,000,020 terms:
Predicted = 38,323
o Actual = 38,365

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Manning, Raghavan, Schitze, Introduction to Information Retrieval (2008)

Postings Size: Z 1 p fLaws

C

Cf —_— cf is the collection frequency of i-th common term
I - Cc is a constant

o Zipf's Law: (also) linear in log-log space
Specific case of Power Law distributions

o |n other words:

A few elements occur very frequently
Many elements occur very infrequently

Z 1 p fLawsfor RCV1

log10 cf

Fit isn’t that good...
but good enough!

log10 rank

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Manning, Raghavan, Schitze, Introduction to Information Retrieval (2008)

MapReduce: Index Construction

o Map over all documents

Emit: <K,V> = <term, (document ID, tf)>
Emit other information as necessary (e.g., term position)

o Sort/shuffle: group postings by term

o Reduce

Sort the postings for each term by docID

* Any issues with sorting values in the reducer (in general)?
Write postings to disk

o MapReduce does all the heavy lifting!

Inverted Indexing: Pseudo -Code

1: class MAPPER
2 procedure MAP(docid n, doc d)
3 H < new ASSOCIATIVEARRAY
4 for all term t € doc d do
5 H{t} — H{t} +1
for all term t € H do
EMIT(term t, posting (n, H{t}))

-~ o

1: class REDUCER
2 procedure REDUCE(term ¢, postings [{ay, f1), (as, f2)...])
3: P «— new LIST
4 for all posting (a. j)_e postings [(ay, f1), (as, f3)...] do
TN »\PPEND(P (a,)"~ ob\em?
6: Y~ SORT(P) - v's the pr

201 Wha

7 EMIT(Term=tT "p'ﬁs'hncis P)

Inverted Indexing with MapReduce

red

Doc 1 Doc 2 Doc 3
one fish, two fish red fish, blue fish cat in the hat
one (211 oo 21 cat ST
Map two |1 - blue |2 . hat |3 .
fish [1]2] fish [2]2]
Shuffle and Sort: aggregate values by keys
cat 3 .
| blue [21]
Reduce fish [1]2][2]2]
et (31
one I. o I.
2[1]

Positional Indexes

Doc 1
one fish, two fish

one 1 [1]

M ap two

11 o
fish 1 . [2,4]

Doc 2
red fish, blue fish

red
blue

fish

Doc 3
cat in the hat

cat 3 . [1]

hat 3 . [2]

Shuffle and Sort: aggregate values by keys

cat

Reduce fish

212] e

one

red

blue
hat

two

Scalabllity Bottleneck

o Initial iImplementation: terms as keys, postings as values

Reducers must buffer all postings associated with key (to sort)
What if we run out of memory to buffer postings?

o Uh oh!

Anot her

(key)
fish

(values)

1

2

34

1

21

35

80

[2,4]

(23]

[1,8,22]

[8,41]

[2,9,76]

9]

Try

(keys)

fish

fish
:: fish
fish

fish

fish

1

9

21

34

35

80

(values)
[2.4]
[9]
[1,8,22]
[23]
[8,41]

[2,9,76]

How is this different?
* Let the framework do the sorting
» Term frequency implicitly stored
* Directly write postings to disk!

Where have we seen this before?

Index Compression

(0]

For each term, imagine we have some scheme to
compress its posting list given its df value

Golomb coding (Lin & Dyer, sec. 4.5.2)
How do achieve this compression?

map() emits <term,posting>, sort groups the postings by term
Count the # of postings in reduce(), then compress

In general, how many values do we have for a given key?

public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> ({
public void reduce(Text key, Iterator<IntWritable>

values,
OutputCollector<Text,

IntWritable> output,
Reporter reporter) throws

ows IOException {
int sum = 0;

while (values.hasNext()) {

sum += values.next () .get();

}

output.collect (key, new IntWritable(sum));

Order Inversion

° |n the mapper:

Emit “special” key-value pairs to keep track of df

o In the reducer:

Make sure “special” key-value pairs come first: process them to
determine df

o Remember: proper partitioning!

Getting the df: Modified Mapper

Doc 1
one fish, two fish Input document...
(key) (value)
fish | 1 [2,4] Emit normal key-value pairs...
one| 1 [1]
two | 1 [3]
fish | 1 [1] Emit “special” key-value pairs to keep track of df...
one| 1 [1]

—)

two [1]

Getting the df : Modified Reducer

(key)

fish

fish

fish

fish

fish

fish

fish

T

21

34

35

80

(value)

First, compute the df by summing contributions

[63] | [82] | [27] y . .
from all “special” key-value pair...

Compress postings incrementally as they arrive

[2.4]

[9]

[1,8,22] Important: properly define sort order to make
sure “special” key-value pairs come first!

(23]

[8,41]

[2,9,76]

\” Write postings directly to disk

Where have we seen this before?

MapReduce It?

o The indexing problem Just covered

Scalability is paramount

Must be relatively fast, but need not be real time
Fundamentally a batch operation

Incremental updates may or may not be important
For the web, crawling is a challenge in itself

o The retrieval problem Now

Must have sub-second response time
For the web, only need relatively few results

Retrieval with MapReduce?

o MapReduce is fundamentally batch-oriented

Optimized for throughput, not latency
Startup of mappers and reducers is expensive

o MapReduce is not suitable for real-time queries!

Use separate infrastructure for retrieval. ..

Important ldeas

o Partitioning (for scalability)
o Replication (for redundancy)
o Caching (for speed)

o Routing (for load balancing)

The rest Is just detalls!

Term vs. Document Partitioning

D
Ty
T,
Term
Partitioning T,

A
S

Document
Partitioning

Katta Architecture
(Distributed Lucene)

hadoop cluster or
single server

http://katta.sourceforge.net

HDFS, NAS or shared
local filesystem

> create index
& and copy to shared filesystem
e el fail over

\
command line
management

) - \\/
\:3%\ java AP

assign download
shards
server nodes in the shards
grid
shard replication ! multicast query

(plug-able policy) multicast query

distributed ranking
plug-able selection
policy (custom load
balancing)

java client API

http://katta.sourceforge.net/

Ivory

n API Publications Experiments Team

Ivory is a Hadoop toolkit for web-scale information retrieval research that features a retrieval engine based on Markov Random Fields, appropriately
named SMRF (Searching with Markov Random Fields). Ivory takes full advantage of the Hadoop distributed environment (the MapReduce programming
model and the underlying distributed file system) for both indexing and retrieval. The current release of Ivory (release 0.4) works with Hadoop (release
0.20.1).

In order to temper expectations, please note that Ivory is not meant to serve as a full-featured search engine, but rather aimed at information retrieval
researchers who generally know their way around retrieval algorithms. As a result, a lot of "niceties” are simply missing—for example, fancy interfaces or
ingestion support for different file types. It goes without saying that Ivory is a bit rough around the edges, but our philosophy is to release early and
release often. In short, Ivory is experimental! If you just want search capabilities as a "black box", Lucene is a likely a better choice. Katta is a
framework for serving distributed Lucene indexes that plays well with Hadoop clusters.

Ivory was specifically designed to work with Hadoop "out of the box" on the ClueWeb09 collection, a 1 billion page (25 TB) Web crawl distributed by
Carnegie Mellon University. The initial release of Ivory is meant to serve as a reference implementation of indexing and retrieval algorithms that can
operate at the multi-terabyte scale. Another interesting experimental aspect of Ivory is the retrieval architecture: we've been playing with retrieval
engines that directly read postings from HDFS.

Download
Ivory is available on github and also as tarballs:

e Ivory, release 0.4 (2010/10/24): ivory-r0.4.tar.gz (21.0 MB) [Release Notes]
¢ Ivory, release 0.3 (2010/07/19): ivory-r0.3.tar.gz (21.0 MB) [Release Notes]
s Ivory, release 0.2 (2009/11/18): ivory-r0.2.tar.gz (8.1 MB) [Release Notes]
s Ivory, release 0.1 (2009/07/18): ivory-r0.1.tar.gz (4.9 MB) [Release Notes]

Ivory depends on Cloud®, a MapReduce library for Hadoop developed at the University of Maryland, which is included in the distribution.

Documentation

» Ivory APT javadoc

» Getting started with TREC disks 4-5

s Getting started with the Wt10g collection

+ Getting started with the Gov2 collection httD://WWW.UmiaCS.Umd .ed U/’”iimmVlin/iVOrV

http://www.umiacs.umd.edu/~jimmylin/ivory
http://www.umiacs.umd.edu/~jimmylin/ivory

