
Data-Intensive Computing for Text Analysis
CS395T / INF385T / LIN386M

University of Texas at Austin, Fall 2011

Lecture 5
September 22, 2011

Matt Lease

School of Information

University of Texas at Austin

ml at ischool dot utexas dot edu

Jason Baldridge

Department of Linguistics

University of Texas at Austin

Jasonbaldridge at gmail dot com

https://sites.google.com/a/utcompling.com/dicta-f11/
https://sites.google.com/a/utcompling.com/dicta-f11/
https://sites.google.com/a/utcompling.com/dicta-f11/
http://www.utexas.edu/
http://hadoop.apache.org/
http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/

Acknowledgments

Course design and slides based on
Jimmy Lin’s cloud computing courses at
the University of Maryland, College Park

Some figures courtesy of the following
excellent Hadoop books (order yours today!)

• Chuck Lam’s Hadoop In Action (2010)

• Tom White’s Hadoop: The Definitive Guide,
2nd Edition (2010)

http://www.umiacs.umd.edu/~jimmylin
http://www.umiacs.umd.edu/~jimmylin/teaching.html
http://www.manning.com/lam/
http://www.manning.com/lam/
http://www.manning.com/lam/
http://www.hadoopbook.com/
http://www.hadoopbook.com/

Today’s Agenda

• IR and MapReduce
– Boolean Retrieval

– Ranked Retrieval

– Inverted Indexing
• Secondary-sorting: sorting postings without buffering

• Order-inversion: compressing postings without buffering

• Group Project organization

• Spelling-correction via IR methods above
– Representing words via character n-grams

IR and MapReduce

First, nomenclature…

º Information retrieval (IR)

¸ Focus on textual information (= text/document retrieval)

¸ Other possibilities include image, video, music, …

º What do we search?

¸ Generically, “collections”

¸ Less-frequently used, “corpora”

º What do we find?

¸ Generically, “documents”

¸ Even though we may be referring to web pages, PDFs,

PowerPoint slides, paragraphs, etc.

Abstract IR Architecture

Documents Query

Hits

Representation

Function

Representation

Function

Query Representation Document Representation

Comparison

Function Index

offline online

How do we represent text?

º Remember: computers don’t “understand” anything!

º “Bag of words”

¸ Treat all the words in a document as index terms

¸ Assign a “weight” to each term based on “importance”

(or, in simplest case, presence/absence of word)

¸ Disregard order, structure, meaning, etc. of the words

¸ Simple, yet effective!

º Assumptions

¸ Term occurrence is independent

¸ “Words” are well-defined

Sample Document

McDonald's slims down spuds

Fast-food chain to reduce certain types of
fat in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as
it moves to make all its fried menu items
healthier.

But does that mean the popular shoestring fries
won't taste the same? The company says no. "It's
a win-win for our customers because they are
getting the same great french-fry taste along with
an even healthier nutrition profile," said Mike
Roberts, president of McDonald's USA.

But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use,
but at least one nutrition expert says playing with
the formula could mean a different taste.

Shares of Oak Brook, Ill.-based McDonald's
(MCD: down $0.54 to $23.22, Research,
Estimates) were lower Tuesday afternoon. It was
unclear Tuesday whether competitors Burger
King and Wendy's International (WEN: down
$0.80 to $34.91, Research, Estimates) would
follow suit. Neither company could immediately
be reached for comment.

…

14 × McDonalds

12 × fat

11 × fries

8 × new

7 × french

6 × company, said, nutrition

5 × food, oil, percent, reduce,

taste, Tuesday

…

“Bag of Words”

What’s a word?

⁹
⁹ РтϮтϼ Шϼϝв ЬϝЦм- аЂϝϠ ФАϝжЮϜ

 ϣтЯтϚϜϼЂшϜ ϣтϮϼϝ϶ЮϜ- ЬϠЦ дмϼϝІ дϖ

ϢϼϝтϾϠ пЮмцϜ ϢϼвЯЮ амЧтЂм ϢмКϸЮϜ

ϼЧвЮϜ ϣЯтмА ϢϼϦУЮ ϤжϝЪ сϦЮϜ ̪ЀжмϦ

 аϝК дϝжϠЮ дв ϝлϮмϼ϶ ϸЛϠ ϣтжтАЂЯУЮϜ ϼтϼϲϦЮϜ ϣвДжвЮ свЂϼЮϜ1982 .

Выступая в Мещанском суде Москвы экс-глава ЮКОСа

заявил не совершал ничего противозаконного, в чем

обвиняет его генпрокуратура России.

ÕɟØÍ ÞØ¾ɟØ Ñɭ zκÎx¾ ÞÛɴàÌ Öʃ θÛĕÍɠ× ÛÝx 2005-06 Öʃ ÞɟÍ ÷ɥÞÏɡ

θÛ¾ɟÞ ÏØ ßɟεÞÙ ¾ØÑɭ ¾ɟ z¾ÙÑ η¾×ɟ ßɮ ©Ø ¾Ø ÞȓÐɟØ ÒØ éɨØ ȏÏ×ɟ ßɮ

≢ ⌐ ☺כ♥Ⱶכ▪…

 = 25 ` ''

 ` ''

 .

Counting Words…

Documents

Inverted

Index

Bag of

Words

case folding, tokenization, stopword removal, stemming

syntax, semantics, world knowledge, etc.

Boolean Retrieval

º Users express queries as a Boolean expression

¸ AND, OR, NOT

¸ Can be arbitrarily nested

º Retrieval is based on the notion of sets

¸ Any given query divides the collection into two sets:

retrieved, not-retrieved

¸ Pure Boolean systems do not define an ordering of the results

Inverted Index: Boolean Retrieval

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

3

4

1

4

4

3

2

1

blue

cat

egg

fish

green

ham

hat

one

2

green eggs and ham
Doc 4

1 red

1 two

2 red

1 two

Boolean Retrieval

º To execute a Boolean query:

¸ Build query syntax tree

¸ For each clause, look up postings

¸ Traverse postings and apply Boolean operator

º Efficiency analysis

¸ Postings traversal is linear (assuming sorted postings)

¸ Start with shortest posting first

(blue AND fish) OR ham

blue fish

AND ham

OR

1

2 blue

fish 2

Strengths and Weaknesses

º Strengths

¸ Precise, if you know the right strategies

¸ Precise, if you have an idea of what you’re looking for

¸ Implementations are fast and efficient

º Weaknesses

¸ Users must learn Boolean logic

¸ Boolean logic insufficient to capture the richness of language

¸ No control over size of result set: either too many hits or none

¸ When do you stop reading? All documents in the result set are

considered “equally good”

¸ What about partial matches? Documents that “don’t quite match”

the query may be useful also

Ranked Retrieval

º Order documents by how likely they are to be relevant to

the information need

¸ Estimate relevance(q, di)

¸ Sort documents by relevance

• note independence assumption between documents wrt relevance

¸ Display sorted results

º User model

¸ Present results one screen at a time, best results first

¸ At any point, users can decide to stop looking

º How do we estimate relevance?

¸ Assume document is relevant if it has a lot of query terms

¸ Replace relevance(q, di) with sim(q, di)

¸ Compute similarity of vector representations

Vector Space Model

Assumption: Documents that are “close together” in

vector space “talk about” the same things

t1

d2

d1

d3

d4

d5

t3

t2

 ̞

 ̫

Therefore, retrieve documents based on how close the

document is to the query (i.e., similarity ~ “closeness”)

Similarity Metric

º Use “angle” between the vectors:

º Or, more generally, inner products (if already normalized):

º Recall this is for similarity of query & document vectors

ää

ä

==

==
Ö

=
n

i ki

n

i ji

n

i kiji

kj

kj

kj

ww

ww

dd

dd
ddsim

1

2

,1

2

,

1 ,,
),(CC

CC
kj

kj

dd

dd
CC

CC
Ö

=)cos(q

ä=
=Ö=

n

i kijikjkj wwddddsim
1 ,,),(

CC

Term Weighting

º Term weights consist of two components

¸ Local: how important is the term in this document?

¸ Global: how important is the term in the collection?

º Here’s the intuition:

¸ Terms that appear often in a document should get high weights

¸ Terms that appear in many documents should get low weights

º How do we capture this mathematically?

¸ Term frequency (local)

¸ Inverse document frequency (global)

TF.IDF Term Weighting

i

jiji
n

N
w logtf ,, Ö=

jiw ,

ji ,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

2

1

1

2

1

1

1

1

1

1

1

Inverted Index: TF.IDF

2

1

2

1

1

1

1 2 3

1

1

1

4

1

1

1

1

1

1

2

1

tf

df

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1 red

1 1 two

1 red

1 two

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

green eggs and ham
Doc 4

3

4

1

4

4

3

2

1

2

2

1

Positional Indexes

º Store term position in postings

º Supports richer queries (e.g., proximity)

º Naturally, leads to larger indexes…

[2,4]

[3]

[2,4]

[2]

[1]

[1]

[3]

[2]

[1]

[1]

[3]

2

1

1

2

1

1

1

1

1

1

1

Inverted Index: Positional Information

2

1

2

1

1

1

1 2 3

1

1

1

4

1

1

1

1

1

1

2

1

tf

df

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1 red

1 1 two

1 red

1 two

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

green eggs and ham
Doc 4

3

4

1

4

4

3

2

1

2

2

1

Retrieval in a Nutshell

º Look up postings lists corresponding to query terms

º Traverse postings for each query term

º Store partial query-document scores in accumulators

º Select top k results to return

Retrieval: Document -at -a-Time

º Evaluate documents one at a time (score all query terms)

º Tradeoffs

¸ Small memory footprint (good)

¸ Must read through all postings (bad), but skipping possible

¸ More disk seeks (bad), but blocking possible

fish 2 1 3 1 2 3 1 9 21 34 35 80 …

blue 2 1 1 9 21 35 …

Accumulators
(e.g. priority queue)

Document score in top k?

Yes: Insert document score, extract-min if queue too large

No: Do nothing

Retrieval: Query -At -A-Time

º Evaluate documents one query term at a time

¸ Usually, starting from most rare term (often with tf-sorted postings)

º Tradeoffs

¸ Early termination heuristics (good)

¸ Large memory footprint (bad), but filtering heuristics possible

fish 2 1 3 1 2 3 1 9 21 34 35 80 …

blue 2 1 1 9 21 35 …

Accumulators
(e.g., hash)

Score{q=x}(doc n) = s

MapReduce it?

º The indexing problem

¸ Scalability is critical

¸ Must be relatively fast, but need not be real time

¸ Fundamentally a batch operation

¸ Incremental updates may or may not be important

¸ For the web, crawling is a challenge in itself

º The retrieval problem

¸ Must have sub-second response time

¸ For the web, only need relatively few results

Indexing: Performance Analysis

º Fundamentally, a large sorting problem

¸ Terms usually fit in memory

¸ Postings usually don’t

º How is it done on a single machine?

º How can it be done with MapReduce?

º First, let’s characterize the problem size:

¸ Size of vocabulary

¸ Size of postings

Vocabulary Size: Heaps’ Law

º Heaps’ Law: linear in log-log space

º Vocabulary size grows unbounded!

bkTM =
M is vocabulary size

T is collection size (number of documents)

k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

Heaps’ Law for RCV1

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

k = 44

b = 0.49

First 1,000,020 terms:

 Predicted = 38,323

 Actual = 38,365

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

Postings Size: Zipf’s Law

º Zipf’s Law: (also) linear in log-log space

¸ Specific case of Power Law distributions

º In other words:

¸ A few elements occur very frequently

¸ Many elements occur very infrequently

i

c
i =cf cf is the collection frequency of i-th common term

c is a constant

Zipf’s Law for RCV1

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Fit isn’t that good…

but good enough!

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

MapReduce: Index Construction

º Map over all documents

¸ Emit: <K,V> = <term, (document ID, tf)>

¸ Emit other information as necessary (e.g., term position)

º Sort/shuffle: group postings by term

º Reduce

¸ Sort the postings for each term by docID

• Any issues with sorting values in the reducer (in general)?

¸ Write postings to disk

º MapReduce does all the heavy lifting!

Inverted Indexing: Pseudo -Code

1

1

2

1

1

2 2

1
1

1

1

1

1

1

1

2

Inverted Indexing with MapReduce

1 one

1 two

1 fish

one fish, two fish
Doc 1

2 red

2 blue

2 fish

red fish, blue fish
Doc 2

3 cat

3 hat

cat in the hat
Doc 3

1 fish 2

1 one
1 two

2 red

3 cat

2 blue

3 hat

Shuffle and Sort: aggregate values by keys

Map

Reduce

[2,4]

[1]

[3]

[1]

[2]

[1]

[1]

[3]

[2]

[3]

[2,4]

[1]

[2,4]

[2,4]

[1]

[3]

1

1

2

1

1

2

1

1

2 2

1
1

1

1

1

1

Positional Indexes

1 one

1 two

1 fish

2 red

2 blue

2 fish

3 cat

3 hat

1 fish 2

1 one
1 two

2 red

3 cat

2 blue

3 hat

Shuffle and Sort: aggregate values by keys

Map

Reduce

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

Scalability Bottleneck

º Initial implementation: terms as keys, postings as values

¸ Reducers must buffer all postings associated with key (to sort)

¸ What if we run out of memory to buffer postings?

º Uh oh!

[2,4]

[9]

[1,8,22]

[23]

[8,41]

[2,9,76]

[2,4]

[9]

[1,8,22]

[23]

[8,41]

[2,9,76]

2

1

3

1

2

3

Another Try…

1 fish

9

21

(values) (key)

34

35

80

1 fish

9

21

(values) (keys)

34

35

80

fish

fish

fish

fish

fish

How is this different?
• Let the framework do the sorting

• Term frequency implicitly stored

• Directly write postings to disk!

Where have we seen this before?

Index Compression

º For each term, imagine we have some scheme to

compress its posting list given its df value

¸ Golomb coding (Lin & Dyer, sec. 4.5.2)

º How do achieve this compression?

¸ map() emits <term,posting>, sort groups the postings by term

¸ Count the # of postings in reduce(), then compress

º In general, how many values do we have for a given key?

Order Inversion

º In the mapper:

¸ Emit “special” key-value pairs to keep track of df

º In the reducer:

¸ Make sure “special” key-value pairs come first: process them to

determine df

º Remember: proper partitioning!

Getting the df : Modified Mapper

one fish, two fish
Doc 1

1 fish [2,4]

(value) (key)

1 one [1]

1 two [3]

Î fish [1]

Î one [1]

Î two [1]

Input document…

Emit normal key-value pairs…

Emit “special” key-value pairs to keep track of df…

Getting the df : Modified Reducer

1 fish

9

[2,4]

[9]

21 [1,8,22]

(value) (key)

34 [23]

35 [8,41]

80 [2,9,76]

fish

fish

fish

fish

fish

Write postings directly to disk

Î fish [63] [82] [27] …

…

First, compute the df by summing contributions

from all “special” key-value pair…

Compress postings incrementally as they arrive

Important: properly define sort order to make

sure “special” key-value pairs come first!

Where have we seen this before?

MapReduce it?

º The indexing problem

¸ Scalability is paramount

¸ Must be relatively fast, but need not be real time

¸ Fundamentally a batch operation

¸ Incremental updates may or may not be important

¸ For the web, crawling is a challenge in itself

º The retrieval problem

¸ Must have sub-second response time

¸ For the web, only need relatively few results

Just covered

Now

Retrieval with MapReduce?

º MapReduce is fundamentally batch-oriented

¸ Optimized for throughput, not latency

¸ Startup of mappers and reducers is expensive

º MapReduce is not suitable for real-time queries!

¸ Use separate infrastructure for retrieval…

Important Ideas

º Partitioning (for scalability)

º Replication (for redundancy)

º Caching (for speed)

º Routing (for load balancing)

The rest is just details!

Term vs. Document Partitioning

…

T

D

T1

T2

T3

D

T …

D1 D2 D3

Term

Partitioning

Document

Partitioning

Katta Architecture
(Distributed Lucene)

http://katta.sourceforge.net

http://katta.sourceforge.net/

http://www.umiacs.umd.edu/~jimmylin/ivory

http://www.umiacs.umd.edu/~jimmylin/ivory
http://www.umiacs.umd.edu/~jimmylin/ivory

