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Today’s Agenda 

• IR and MapReduce 
– Boolean Retrieval 

– Ranked Retrieval 

– Inverted Indexing 
• Secondary-sorting: sorting postings without buffering 

• Order-inversion: compressing postings without buffering 

  

• Group Project organization 

 

• Spelling-correction via IR methods above 
– Representing words via character n-grams  

 



IR and MapReduce 



First, nomenclature… 

º Information retrieval (IR) 

¸ Focus on textual information (= text/document retrieval) 

¸ Other possibilities include image, video, music, … 

º What do we search? 

¸ Generically, “collections” 

¸ Less-frequently used, “corpora” 

º What do we find? 

¸ Generically, “documents” 

¸ Even though we may be referring to web pages, PDFs, 

PowerPoint slides, paragraphs, etc. 



Abstract IR Architecture  
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How do we represent text?  

º Remember: computers don’t “understand” anything! 

º “Bag of words” 

¸ Treat all the words in a document as index terms 

¸ Assign a “weight” to each term based on “importance”  

(or, in simplest case, presence/absence of word) 

¸ Disregard order, structure, meaning, etc. of the words 

¸ Simple, yet effective! 

º Assumptions 

¸ Term occurrence is independent 

¸ “Words” are well-defined 



Sample Document  

McDonald's slims down spuds 

Fast-food chain to reduce certain types of 
fat in its french fries with new cooking oil. 

NEW YORK (CNN/Money) - McDonald's Corp. is 
cutting the amount of "bad" fat in its french fries 
nearly in half, the fast-food chain said Tuesday as 
it moves to make all its fried menu items 
healthier. 

But does that mean the popular shoestring fries 
won't taste the same? The company says no. "It's 
a win-win for our customers because they are 
getting the same great french-fry taste along with 
an even healthier nutrition profile," said Mike 
Roberts, president of McDonald's USA. 

But others are not so sure. McDonald's will not 
specifically discuss the kind of oil it plans to use, 
but at least one nutrition expert says playing with 
the formula could mean a different taste. 

Shares of Oak Brook, Ill.-based McDonald's 
(MCD: down $0.54 to $23.22, Research, 
Estimates) were lower Tuesday afternoon. It was 
unclear Tuesday whether competitors Burger 
King and Wendy's International (WEN: down 
$0.80 to $34.91, Research, Estimates) would 
follow suit. Neither company could immediately 
be reached for comment. 

… 

14 × McDonalds 

12 × fat 

11 × fries 

8 × new 

7 × french  

6 × company, said, nutrition 

5 × food, oil, percent, reduce, 

taste, Tuesday 

… 

 

“Bag of Words” 



What’s a word? 

⁹
⁹   РтϮтϼ Шϼϝв ЬϝЦм- аЂϝϠ ФАϝжЮϜ  

 ϣтЯтϚϜϼЂшϜ ϣтϮϼϝ϶ЮϜ- ЬϠЦ дмϼϝІ дϖ  

ϢϼϝтϾϠ пЮмцϜ ϢϼвЯЮ амЧтЂм ϢмКϸЮϜ  

ϼЧвЮϜ ϣЯтмА ϢϼϦУЮ ϤжϝЪ сϦЮϜ ̪ЀжмϦ  

 аϝК дϝжϠЮ дв ϝлϮмϼ϶ ϸЛϠ ϣтжтАЂЯУЮϜ ϼтϼϲϦЮϜ ϣвДжвЮ свЂϼЮϜ1982 .  

Выступая в Мещанском суде Москвы экс-глава ЮКОСа 

заявил не совершал ничего противозаконного, в чем 

обвиняет его генпрокуратура России.  

ÕɟØÍ ÞØ¾ɟØ Ñɭ zκÎx¾ ÞÛɴàÌ Öʃ θÛĕÍɠ× ÛÝx 2005-06 Öʃ ÞɟÍ ÷ɥÞÏɡ 

θÛ¾ɟÞ ÏØ ßɟεÞÙ ¾ØÑɭ ¾ɟ z¾ÙÑ η¾×ɟ ßɮ ©Ø ¾Ø ÞȓÐɟØ ÒØ éɨØ ȏÏ×ɟ ßɮ  

≢ ⌐ ☺כ♥Ⱶכ▪…   

 =  25    ` '' 

  `    ''     

 . 

 



Counting Words… 

Documents 

Inverted 

Index 

Bag of 

Words 

case folding, tokenization, stopword removal, stemming 

syntax, semantics, world knowledge, etc. 



Boolean Retrieval  

º Users express queries as a Boolean expression 

¸ AND, OR, NOT 

¸ Can be arbitrarily nested 

º Retrieval is based on the notion of sets 

¸ Any given query divides the collection into two sets:  

retrieved, not-retrieved 

¸ Pure Boolean systems do not define an ordering of the results 



Inverted Index: Boolean Retrieval  

one fish, two fish 
Doc 1 

red fish, blue fish 
Doc 2 

cat in the hat 
Doc 3 
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one 

2 
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Doc 4 

1 red 

1 two 

2 red 

1 two 



Boolean Retrieval  

º To execute a Boolean query: 

¸ Build query syntax tree 

 

 

¸ For each clause, look up postings 

 

 

 

¸ Traverse postings and apply Boolean operator 

º Efficiency analysis 

¸ Postings traversal is linear (assuming sorted postings) 

¸ Start with shortest posting first  

 

( blue AND fish ) OR ham 

blue fish 

AND ham 

OR 

1 

2 blue 

fish 2 



Strengths and Weaknesses  

º Strengths 

¸ Precise, if you know the right strategies 

¸ Precise, if you have an idea of what you’re looking for 

¸ Implementations are fast and efficient 

º Weaknesses 

¸ Users must learn Boolean logic 

¸ Boolean logic insufficient to capture the richness of language 

¸ No control over size of result set: either too many hits or none 

¸ When do you stop reading? All documents in the result set are 

considered “equally good” 

¸ What about partial matches? Documents that “don’t quite match” 

the query may be useful also 



Ranked Retrieval  

º Order documents by how likely they are to be relevant to 

the information need 

¸ Estimate relevance(q, di) 

¸ Sort documents by relevance 

• note independence assumption between documents wrt relevance 

¸ Display sorted results 

º User model 

¸ Present results one screen at a time, best results first 

¸ At any point, users can decide to stop looking 

º How do we estimate relevance? 

¸ Assume document is relevant if it has a lot of query terms 

¸ Replace relevance(q, di) with sim(q, di) 

¸ Compute similarity of vector representations 



Vector Space Model  

Assumption: Documents that are “close together” in 

vector space “talk about” the same things 

t1 

d2 

d1 

d3 

d4 

d5 

t3 

t2 

 ̞

 ̫

Therefore, retrieve documents based on how close the 

document is to the query (i.e., similarity ~ “closeness”) 



Similarity Metric  

º Use “angle” between the vectors: 

 

 

 

 

 

º Or, more generally, inner products (if already normalized): 

 

 

º Recall this is for similarity of query & document vectors 
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Term Weighting  

º Term weights consist of two components 

¸ Local: how important is the term in this document? 

¸ Global: how important is the term in the collection?  

º Here’s the intuition: 

¸ Terms that appear often in a document should get high weights 

¸ Terms that appear in many documents should get low weights 

º How do we capture this mathematically? 

¸ Term frequency (local) 

¸ Inverse document frequency (global) 



TF.IDF Term Weighting  
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Inverted Index: TF.IDF  
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Positional Indexes  

º Store term position in postings 

º Supports richer queries (e.g., proximity) 

º Naturally, leads to larger indexes… 
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Inverted Index: Positional Information  
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Retrieval in a Nutshell  

º Look up postings lists corresponding to query terms 

º Traverse postings for each query term 

º Store partial query-document scores in accumulators 

º Select top k results to return 



Retrieval: Document -at -a-Time  

º Evaluate documents one at a time (score all query terms) 

 

 

 

 

 

 

º Tradeoffs 

¸ Small memory footprint (good) 

¸ Must read through all postings (bad), but skipping possible 

¸ More disk seeks (bad), but blocking possible 

fish 2 1 3 1 2 3 1 9 21 34 35 80 … 

blue 2 1 1 9 21 35 … 

Accumulators 
(e.g. priority queue) 

Document score in top k? 

Yes: Insert document score, extract-min if queue too large 

No: Do nothing 



Retrieval: Query -At -A-Time  

º Evaluate documents one query term at a time  

¸ Usually, starting from most rare term (often with tf-sorted postings) 

 

 

 

 

 

º Tradeoffs 

¸ Early termination heuristics (good) 

¸ Large memory footprint (bad), but filtering heuristics possible 

 

fish 2 1 3 1 2 3 1 9 21 34 35 80 … 

blue 2 1 1 9 21 35 … 

Accumulators 
(e.g., hash) 

Score{q=x}(doc n) = s 



MapReduce it?  

º The indexing problem 

¸ Scalability is critical 

¸ Must be relatively fast, but need not be real time 

¸ Fundamentally a batch operation 

¸ Incremental updates may or may not be important 

¸ For the web, crawling is a challenge in itself 

º The retrieval problem 

¸ Must have sub-second response time 

¸ For the web, only need relatively few results 

 



Indexing: Performance Analysis  

º Fundamentally, a large sorting problem 

¸ Terms usually fit in memory 

¸ Postings usually don’t 

º How is it done on a single machine? 

º How can it be done with MapReduce? 

º First, let’s characterize the problem size: 

¸ Size of vocabulary 

¸ Size of postings 

 



Vocabulary Size: Heaps’ Law 

 

 

 

 

 

º Heaps’ Law: linear in log-log space 

º Vocabulary size grows unbounded! 

 

bkTM =
M is vocabulary size 

T is collection size (number of documents) 

k and b are constants 

Typically, k is between 30 and 100, b is between 0.4 and 0.6 



Heaps’ Law for RCV1 

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997) 

k = 44 

b = 0.49 

First 1,000,020 terms: 

     Predicted = 38,323 

     Actual = 38,365 

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008) 



Postings Size: Zipf’s Law  

 

 

 

 

 

º Zipf’s Law: (also) linear in log-log space 

¸ Specific case of Power Law distributions 

º In other words: 

¸ A few elements occur very frequently 

¸ Many elements occur very infrequently 

 

i

c
i =cf cf is the collection frequency of i-th common term 

c is a constant 



Zipf’s Law for RCV1  

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997) 

Fit isn’t that good… 

but good enough! 

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008) 



MapReduce: Index Construction  

º Map over all documents 

¸ Emit: <K,V> = <term, (document ID, tf)> 

¸ Emit other information as necessary (e.g., term position) 

º Sort/shuffle: group postings by term 

º Reduce 

¸ Sort the postings for each term by docID 

• Any issues with sorting values in the reducer (in general)? 

¸ Write postings to disk 

º MapReduce does all the heavy lifting! 



Inverted Indexing: Pseudo -Code  
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Inverted Indexing with MapReduce  

1 one 

1 two 

1 fish 

one fish, two fish 
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3 cat 

2 blue 
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Shuffle and Sort: aggregate values by keys 

Map 

Reduce 



[2,4] 

[1] 

[3] 

[1] 

[2] 

[1] 

[1] 

[3] 

[2] 

[3] 

[2,4] 

[1] 

[2,4] 

[2,4] 

[1] 

[3] 

1 

1 

2 

1 

1 

2 

1 

1 

2 2 

1 
1 

1 

1 

1 

1 

Positional Indexes  

1 one 

1 two 

1 fish 

2 red 

2 blue 
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3 cat 

3 hat 

1 fish 2 

1 one 
1 two 

2 red 

3 cat 

2 blue 

3 hat 

Shuffle and Sort: aggregate values by keys 

Map 

Reduce 

one fish, two fish 
Doc 1 

red fish, blue fish 
Doc 2 

cat in the hat 
Doc 3 



Scalability Bottleneck  

º Initial implementation: terms as keys, postings as values 

¸ Reducers must buffer all postings associated with key (to sort) 

¸ What if we run out of memory to buffer postings? 

º Uh oh! 



[2,4] 

[9] 

[1,8,22] 

[23] 

[8,41] 

[2,9,76] 

[2,4] 

[9] 

[1,8,22] 

[23] 

[8,41] 

[2,9,76] 

2 

1 

3 

1 
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3 

Another Try… 

1 fish 

9 

21 

(values) (key) 

34 

35 

80 

1 fish 

9 

21 

(values) (keys) 

34 

35 

80 

fish 

fish 

fish 

fish 

fish 

How is this different? 
• Let the framework do the sorting 

• Term frequency implicitly stored 

• Directly write postings to disk! 

Where have we seen this before? 



Index Compression  

º For each term, imagine we have some scheme to 

compress its posting list given its df value 

¸ Golomb coding (Lin & Dyer, sec. 4.5.2) 

º How do achieve this compression? 

¸ map() emits <term,posting>, sort groups the postings by term 

¸ Count the # of postings in reduce(), then compress 

º In general, how many values do we have for a given key? 

 



Order Inversion  

º In the mapper: 

¸ Emit “special” key-value pairs to keep track of df 

º In the reducer: 

¸ Make sure “special” key-value pairs come first: process them to 

determine df 

º Remember: proper partitioning! 



Getting the df : Modified Mapper  

one fish, two fish 
Doc 1 

1 fish [2,4] 

(value) (key) 

1 one [1] 

1 two [3] 

Î fish [1] 

Î one [1] 

Î two [1] 

Input document… 

Emit normal key-value pairs… 

Emit “special” key-value pairs to keep track of df… 



Getting the df : Modified Reducer  

1 fish 

9 

[2,4] 

[9] 

21 [1,8,22] 

(value) (key) 

34 [23] 

35 [8,41] 

80 [2,9,76] 

fish 

fish 

fish 

fish 

fish 

Write postings directly to disk 

Î fish [63] [82] [27] … 

… 

First, compute the df by summing contributions 

from all “special” key-value pair… 

Compress postings incrementally as they arrive 

Important: properly define sort order to make 

sure “special” key-value pairs come first! 

Where have we seen this before? 



MapReduce it?  

º The indexing problem 

¸ Scalability is paramount 

¸ Must be relatively fast, but need not be real time 

¸ Fundamentally a batch operation 

¸ Incremental updates may or may not be important 

¸ For the web, crawling is a challenge in itself 

º The retrieval problem 

¸ Must have sub-second response time 

¸ For the web, only need relatively few results 

 

Just covered 

Now 



Retrieval with MapReduce?  

º MapReduce is fundamentally batch-oriented 

¸ Optimized for throughput, not latency 

¸ Startup of mappers and reducers is expensive 

º MapReduce is not suitable for real-time queries! 

¸ Use separate infrastructure for retrieval… 



Important Ideas  

º Partitioning (for scalability) 

º Replication (for redundancy) 

º Caching (for speed) 

º Routing (for load balancing)  

The rest is just details! 



Term vs. Document Partitioning  

… 

T 

D 

T1 

T2 

T3 

D 

T … 

D1 D2 D3 

Term  

Partitioning 

Document 

Partitioning 



Katta Architecture 
(Distributed Lucene) 

http://katta.sourceforge.net 

http://katta.sourceforge.net/


http://www.umiacs.umd.edu/~jimmylin/ivory 

http://www.umiacs.umd.edu/~jimmylin/ivory
http://www.umiacs.umd.edu/~jimmylin/ivory

